Bayesian Phase I/II clinical trials in Oncology

Pierre Mancini, Sandrine Micallef, Pierre Colin

Séminaire JEM-SFES - 26 Janvier 2012

Oncology phase I trials

- Limitations of traditional phase I designs
- Bayesian phase I design with toxicity endpoint
- Bayesian phase I design with toxicity and efficacy
- I-SPY 2: example of adaptive phase II trial
- Bayesian adaptive phase III trials
- Conclusion

Phase I clinical trials in oncology

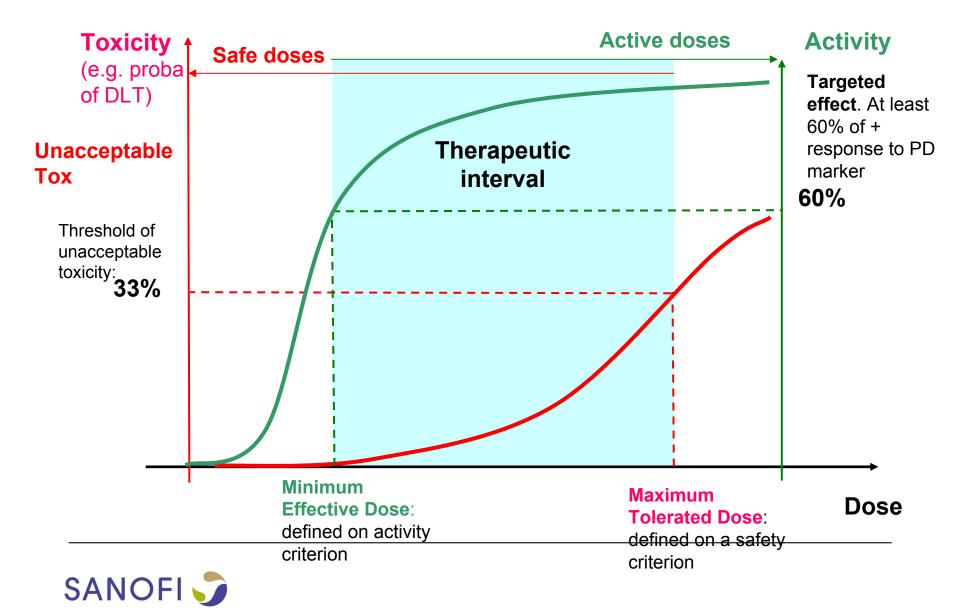
Recommend a dose for Phase II clinical trial

Design:

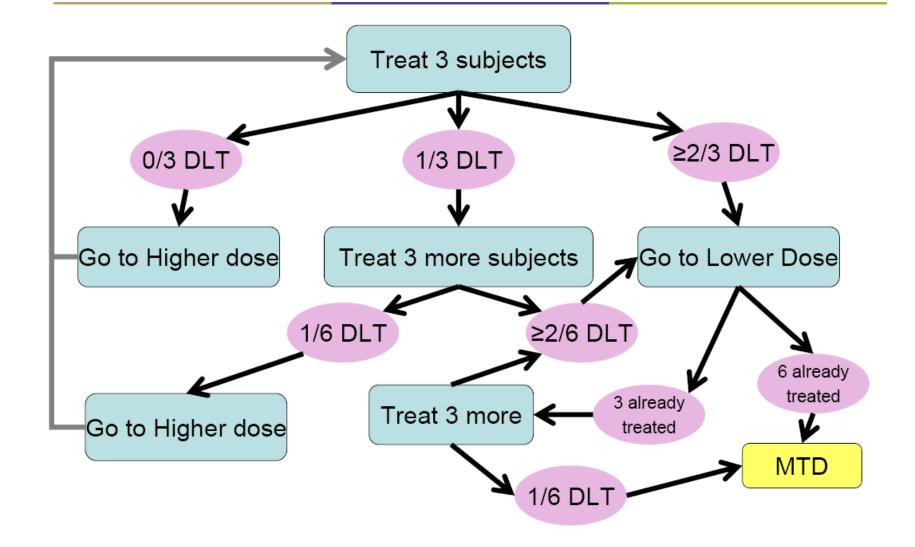
- Patients included in successive cohorts (usually n=3 in each cohort)
- All patients within the same cohort receive the same dose
 - First cohort receive the lowest dose
 - Primary **endpoint**: Dose-Limiting Toxicity
 - After completion of each cohort, decision is made on predefined algorithm to:
 - Escalate the dose
 - Stay at the same dose
 - De-escalate the dose
 - Stop the study

- Therapeutic and toxic effect of a treatment are related to the dose given
- Monotonic dose-toxicity and dose-activity relationship
 - higher is the dose, higher is the activity
 - highly influenced oncologist in designing phase I trials
- True for cytotoxic drug but currently challenged for new generation of anti-cancer drug, e.g. targeted agents with less toxicity

Phase I purposes

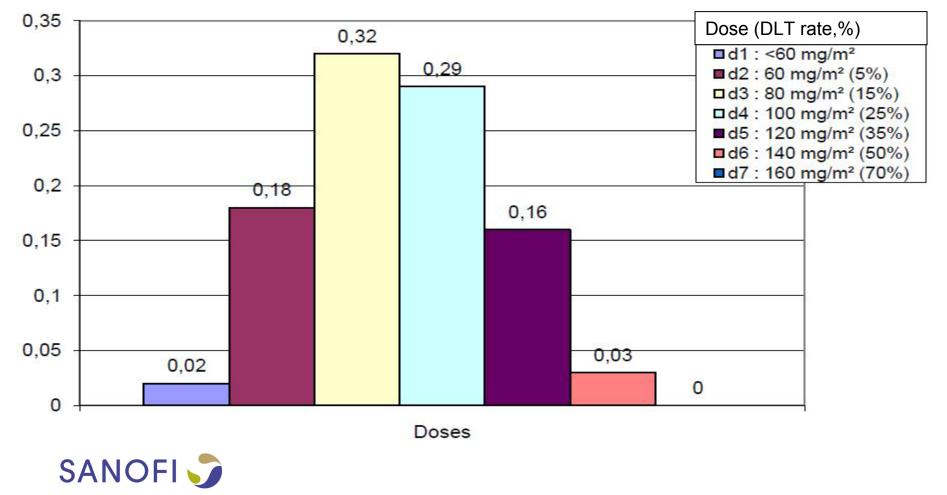


Algorithm-based ("3+3") phase I design



Simulation of 1000 phase I trials using "3+3" design

Distribution of estimated MTD



Pros

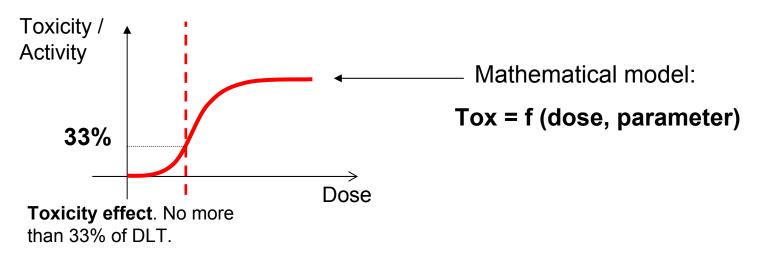
- Simplicity, Classical
- Generally « safe »

Cons

- Short memory (only the current dose level used to decide about next one)
- High variability
- Tend to under-estimate MTD
- Too many pts treated at non-toxic (and non-active?) dose
 - but accelerated titration design better than « 3+3 »
- Choice of targeted toxicity level severly limited

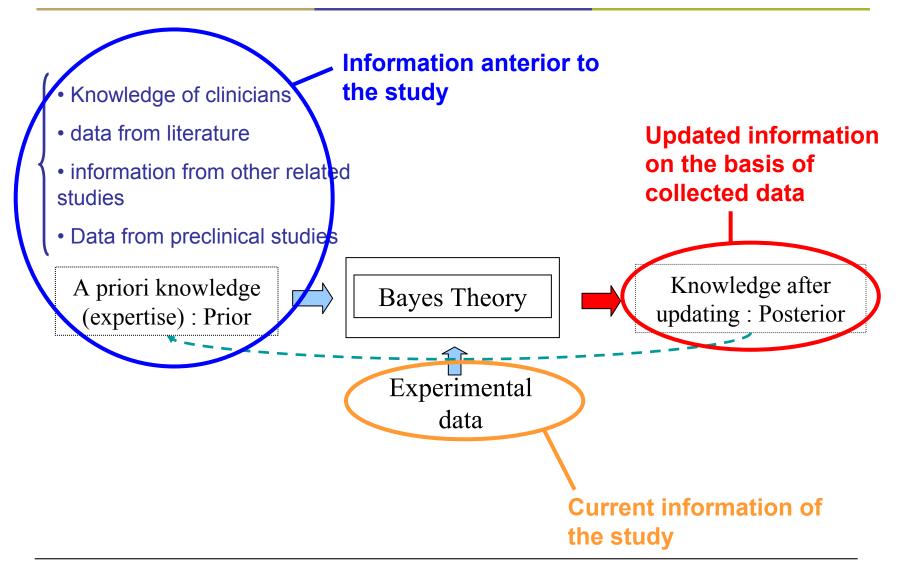
What means « Dose-response model based » approach ?

- Try to assess a dose-response relationship using mathematical function
- Use mathematical tool (model) to define probability of DLT as a function of dose

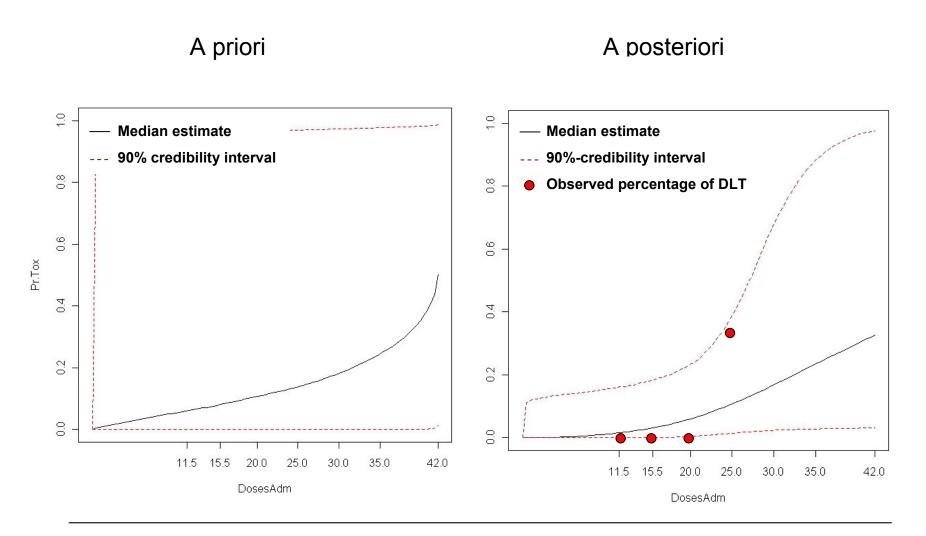


- provides quantification for the dose response relationship
- Allows interpolation: « what happened between two dose levels ? »

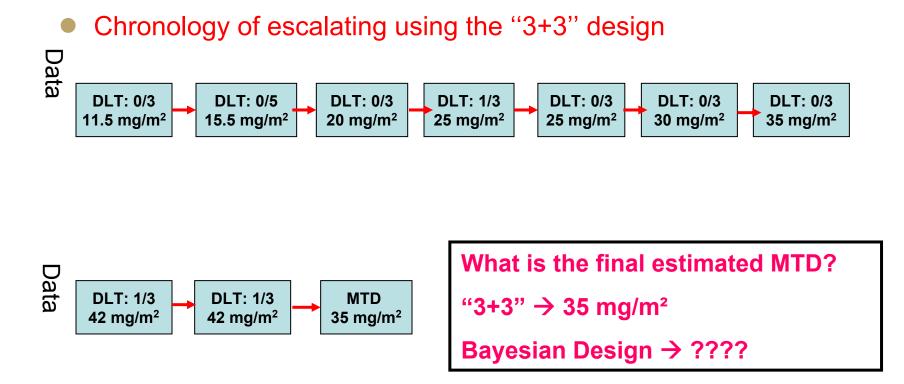
Principle of the Bayesian approach



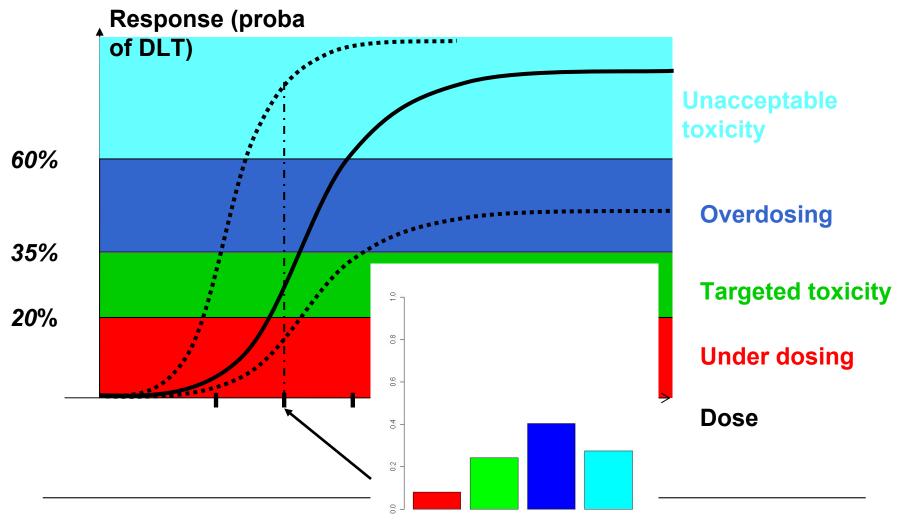
Estimated dose-response relationship: *a priori* and *a posteriori*

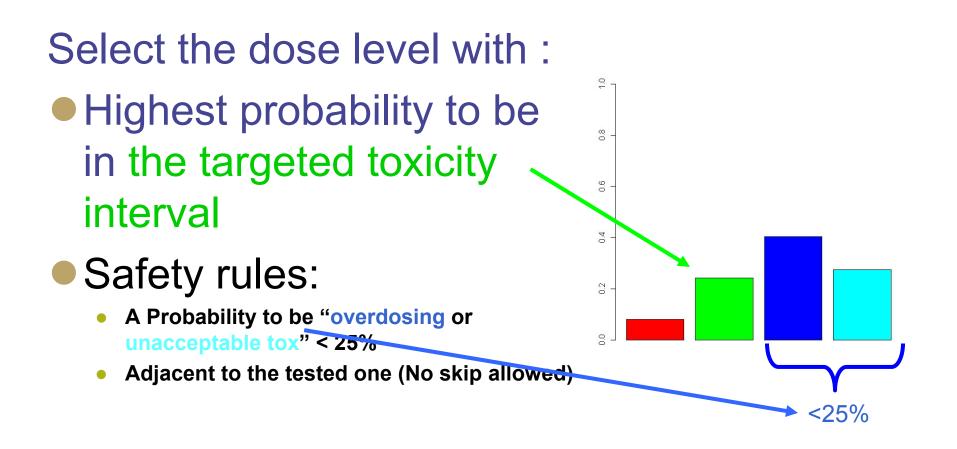


Phase I trial of Agent A + Agent B

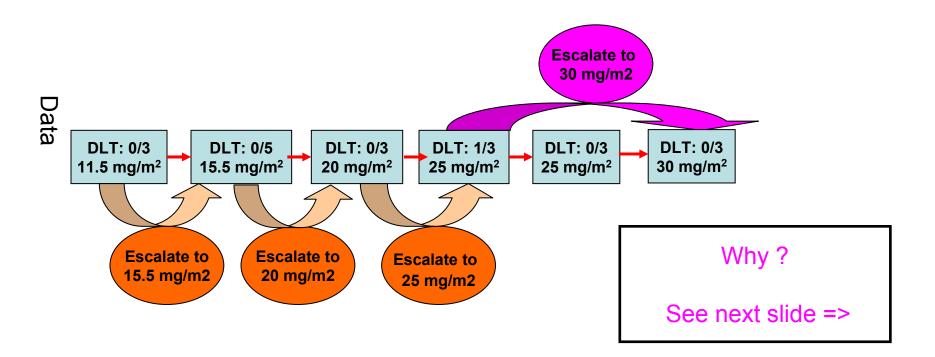


Dose escalation based on probability of toxicity for the next DL

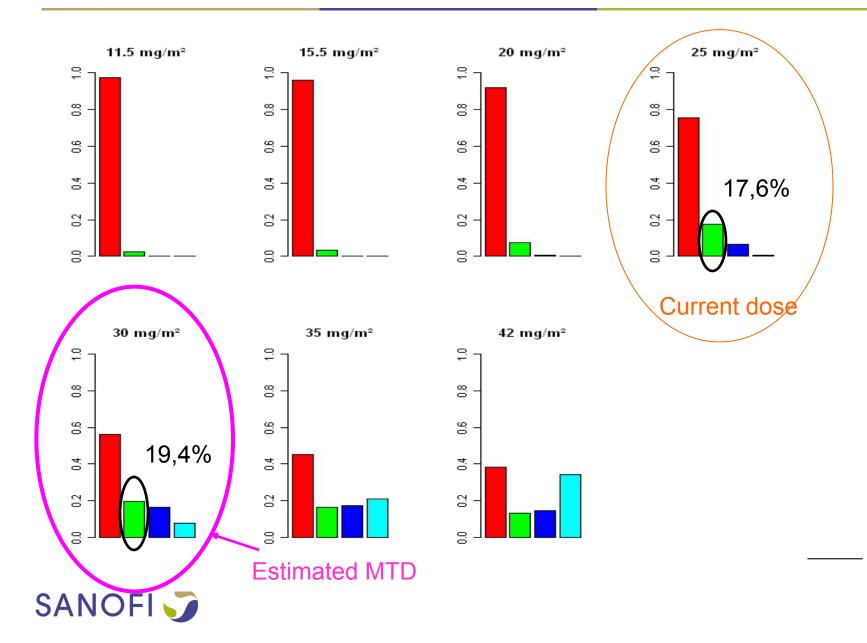




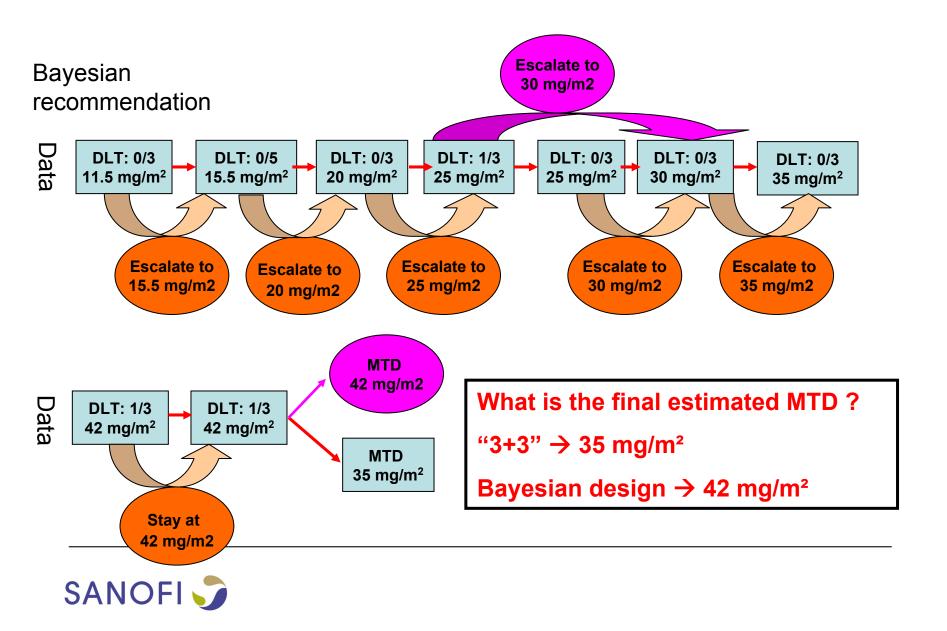
Phase I trial example



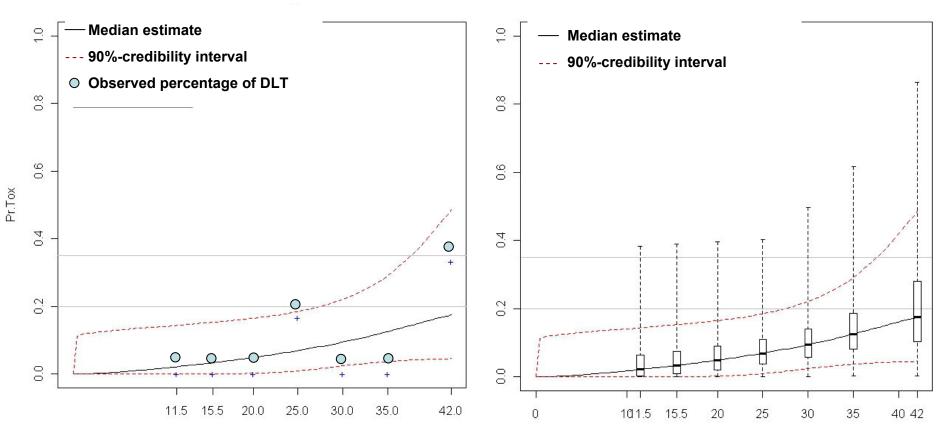
Bayesian decision principle



Phase I trial example



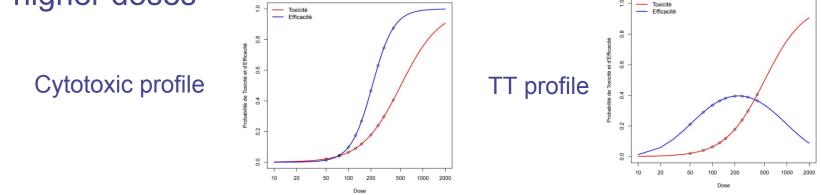
At the end of the escalation part ...



Finally, among the 13 patients (escalation + expansion cohort) treated at 35 mg/m², 2 patients (15.4%) experienced a DLT

- For targeted anti-cancer therapies (TT), MTD may become irrelevant if therapeutic effects are already achieved at lower doses
- Worst case, the therapeutic effect may even be lower at higher doses

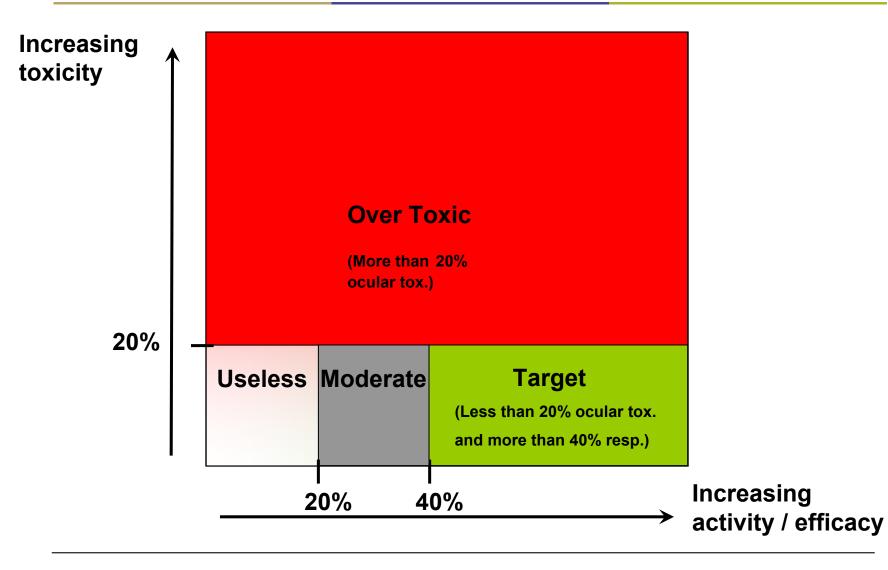
 ^{scenario 1}
 ^{scenario 2}
 ^{scenario}



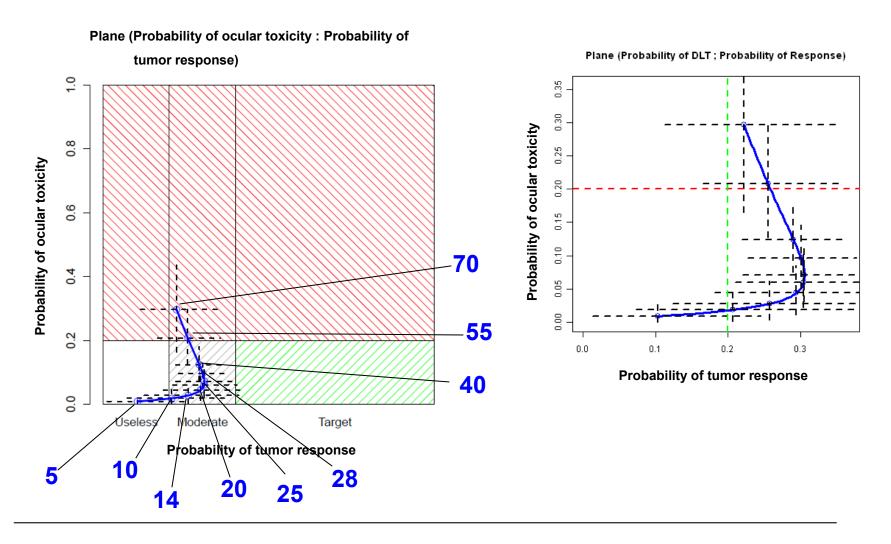
→ Model-based phase I designs can face such a challenge

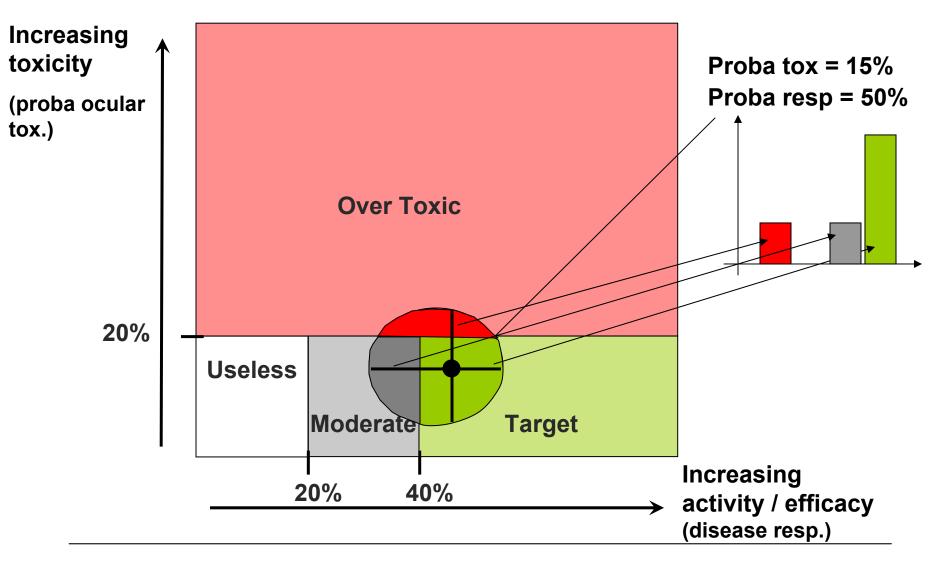
- → By finding the optimal biological dose (i.e. joint assessment of toxicity and efficacy)
- → Indentify a range of doses and do a randomized phase II dose-finding trial

Toxicity vs Activity (2/2)

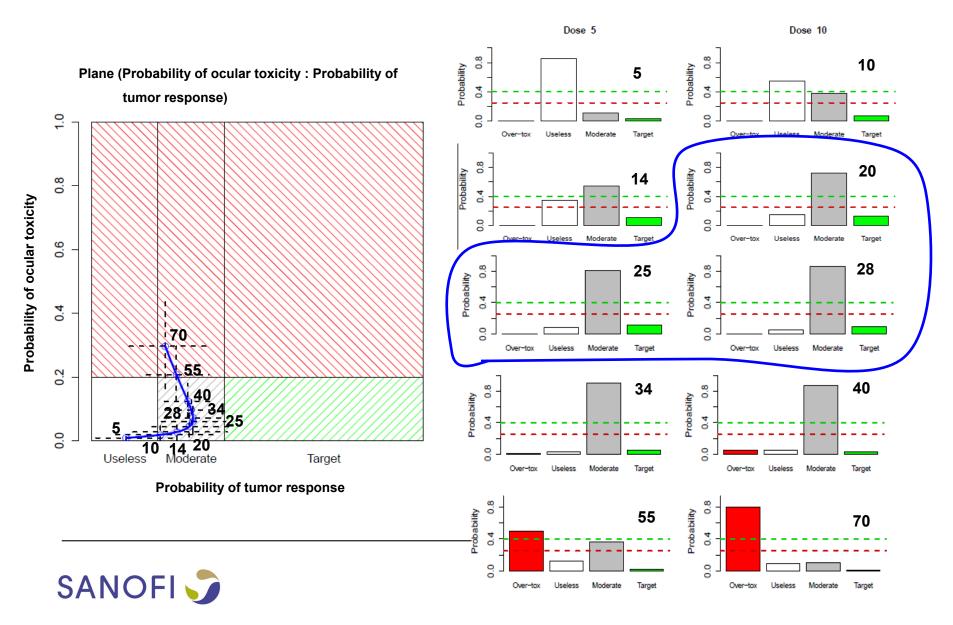


Balancing probability of ocular toxicities and probability of tumor response





Balancing probability of ocular toxicities and probability of tumor response



- Bayesian design show better performances than the algorithmic « 3+3 »
- Decision tool
- Takes uncertainty into account
- Able to handle prior information when wishable
- Modeling approach : Assessment of the dosetoxicity relationship
 - Probability of toxicity is assessed whatever the dose :
 - Range of targeted toxicity can be chosen (not only 33%)
 - Ability to recommend a « better » intermediate dose (MTD between two tested dose level)
 - Allows for mechanistic based approach (takes other "endpoints" into account, e.g. PK, biomarkers ...)
 - Can handle "multidrug" approaches (Combo)

I-SPY 2 clinical trial

- Adaptive screening phase II clinical trial
- Locally advanced breast cancer, neoadjuvant setting
- Primary endpoint pCR (pathologic complete response) after 5 months
- Trial Objective:
 - To learn as quickly as possible about efficacy of novel drugs in combo with standard chemo
 - Identify treatments for patients subsets on the basis of biomarker signature
 - Use earlier efficacy endpoints (MRI-based, longidutinal data)
- 5 experimental drug simultenaously
- Trial adaptation
 - Sample size for each experimental can very from 20 to 120
 - Experimental drugs can be dropped or graduated
 - New experimental arms can come in the trial
 - Bayesian adaptive randomization

Possible adaptive confirmatory clinical trials

Adaptive design

• Use accumulating data to decide on how to modify aspects of the trial without undermining the validity and integrity of the trial

Adaptations can include

- Early stopping (futility, early rejection)
- Sample size re-assessment
- Treatment arms (dropping, adding arms)
- Hypotheses (Non-inferiority vs. superiority)
- Population (inclusion/exclusion criteria; subgroups)
- Combine trial / treatment phases

Bayesian tools for interim monitoring

- Posterior distribution of parameter of interest: repeat the hypothesis test during the course of the trial
- Predictive probability: assess the probability that the final hypothesis test will be sucessfull

Guidance for Industry and FDA Staff

Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials

Document issued on: February 5, 2010

The draft of this document was issued on 5/23/2006

Conclusion

- More use of adaptive bayesian methods in oncology early phase clinical trials
 - Many attractive facets for data monitoring and analysis
 - Take into account uncertainty
 - Prior data can help for small trials
 - Complex data analysis models
 - Computation easier than before

• Regulatory hurdle is high for phase III trials but ... door is opening

- Bayesian interim analysis stopping rules
- Medical device FDA guidance
- Simulation of operating characteristics is mandatory and critical

Perspectives

- Broader use of adaptive designs in oncology phase I and II clinical trials
- Use of more complex Bayesian modeling techniques for dose-finding trials (e.g. use of PK data, hierarchical models, mechanistic modeling)

- [1] Booth C. M., Calvert A. H., Giaccone G.,Lobbe-Zoo M. W., Seymour L. K., Eisenhauer E. A. Endpoints and other considerations in phase I studies of targeted anticancer therapy: Recommendations from the task force on methodology for the development of innovative cancer therapies. European Journal of Cancer 2008, 44, 19-24.
- [2] O'Quigley J., Pepe M., Fisher L .Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990, 46, 33-48.
- [3] Neuenschwander B., Branson M., Gsponer T. Critical aspects of the bayesian approach to phase I cancer trials. Statistics in Medicine 2008, 27, 2420-2439.
- [4] Berry D., Adaptive clinical trials in oncology, Nature Reviews 2011 (advance online publication)
- [5] Bretz F. *et al*, Adaptive designs for confirmatory clinical trials, Statistics in Medicine 2009
- [6] FDA. Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials [online], http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocum

ents/ucm071072.htm

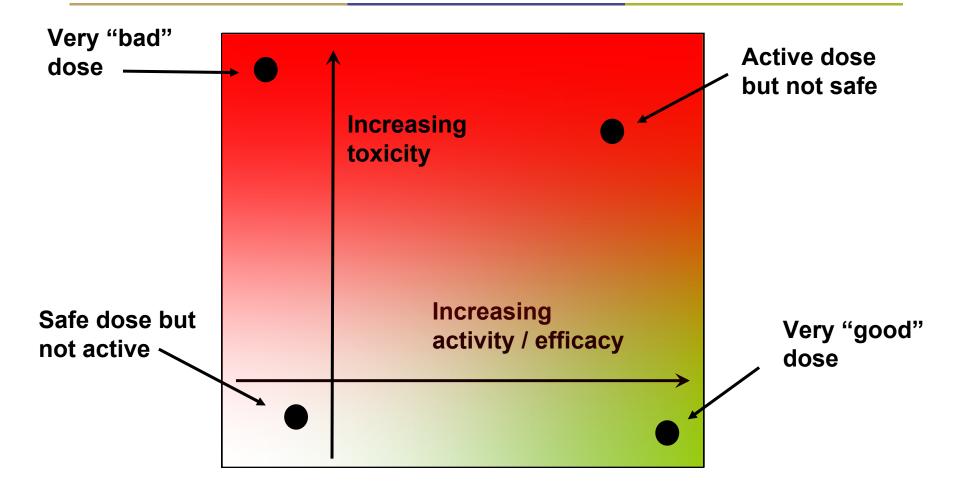
• Données : N-uplets $(Y_1, ..., Y_N)$ où $Y_i \sim B(n_i, \pi(d_j|(\alpha_1, \beta)))$ • Modèle DR logistique à 2 paramètres : $logit(\pi(d|(\alpha_1, \beta))) = ln(\alpha_1) + \beta ln(\frac{d}{d^*}), \quad \alpha_1, \beta > 0$

- d est la dose courante de l'agent
- d^{*} est la dose de référence
- α_1 et β sont les paramétres du modèle
- $\alpha_1 = \frac{\pi(d^*)}{1-\pi(d^*)}$ est l'odds (la cote) de toxicité de l'agent au niveau de dose d^*
- Pour deux doses d_i et d_j, β est essentiellement égal au log-odds ratio d'une DLT :

$$\beta = \frac{\operatorname{logit}(\pi(d_j)) - \operatorname{logit}(\pi(d_i))}{\operatorname{log}(\frac{d_j}{d_i})}$$

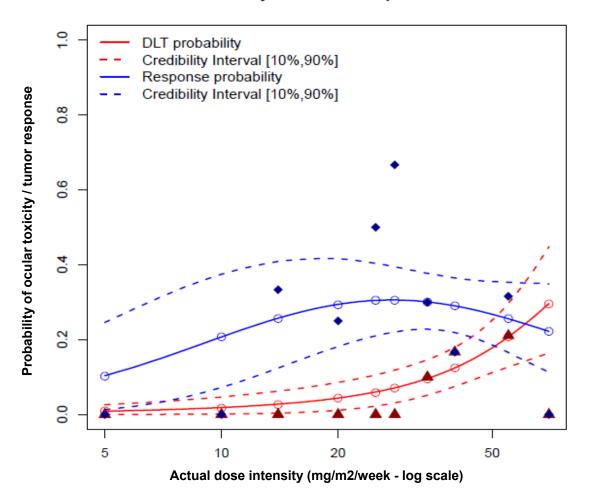
SANOH 🄰

Toxicity vs Activity (1/2)



Dose toxicity and dose efficacy curves

Dose-toxicity and Dose-Response curves



	Algorithmic ("3+3")	Bayesian DR- model based
Implementatio n	Easy	More complex due to statistical component
Flexibility	Not very flexible	Flexible: allows for
	fixed cohort size	different cohort sizes
	fixed doses	intermediate doses
		Pursue several doses (schedule) in parallel
Build-up	Empirical	Prior information
information / "learning		Data gathered during the trial: DLT Can be extended to adjust for covariates
process"		Jointly model DLT and PD endpoints
Inference for true DLT rates	Observed DLT rates only	Full inference, uncertainty assessed for true DLT rates (as dose response relationship)
Statistical	None	"reasonable" model
requirements		Simulation required to assess behavior

